Кроме значения номинальных напряжений первичной и вторичной обмотки, одной из важнейших характеристик трансформатора любого типа является максимальная электрическая мощность, которую можно получить на вторичной обмотке в номинальном режиме работы трансформатора. Состоянии, в котором он может работать длительно, без нагрева обмоток до критической температуры.
Передача электрической энергии из первичной обмотки во вторичную осуществляется благодаря взаимодействию магнитных потоков обмоток, и этот процесс неминуемо сопровождается некоторыми потерями энергии.
Основными составляющими которых являются потери в проводах обмоток и стальном сердечнике магнитопровода. Для количественной и качественной оценки этого явления ввели понятие потерь мощности. Вместе с еще одной важной характеристикой, которую называют напряжением короткого замыкания и измеряют в процентах, показатели потерь мощности характеризуют КПД и конструктивную экономичность трансформатора.
Наша компания занимается поставками трансформаторного оборудования различного типа. На сайте, в категории Трансформаторы вы можете ознакомиться с перечнем продукции.
Значение показателя потерь мощности состоит их суммы потерь в режимах ХХ (холостой ход) и КЗ (короткое замыкание). Трансформатор работает в режиме холостого хода, когда его вторичная обмотка разомкнута, а по первичной, которая подключена к источнику питания, течет определенный ток. Вся подведенная к трансформатору мощность расходуется на перемагничивание стального сердечника, который обычно изготовлен из пакета тонких стальных пластин.
Переменный ток в соответствии со своей частотой ритмично меняет направление с «плюса» на «минус» и обратно, а в каждом цикле плавно возрастает с нуля до максимума, потом снижается до нуля, уходит в сторону отрицательного максимума и так далее. При этом происходит намагничивание и размагничивание сердечника. Эти два процесса не протекают синхронно. Из-за того, что металл как бы «сопротивляется» ритмичному переориентированию его магнитной структуры, процессы намагничивания – размагничивания сердечника несколько отстают во времени от побуждающего их к этому магнитного потока. Созданного переменным током в первичной обмотке.
Ее величество петля гистерезиса
Это запаздывание процессов в сердечнике от изменения направления и силы тока в обмотке, породившей перемагничивающий магнитный поток, приводит к тому, что в момент нулевого значения тока магнитная индукция в железе снизиться до нуля не успевает.
На картинке справа экран осцилографа отображает кривую, описывающую этот процесс - петлю гистерезиса. Вид этой кривой для разных сортов стали различен, так как определяется максимальной магнитной индукцией.
По площади, которую занимает петля на графике, можно судить об электрической мощности, которая расходуется на процессы перемагничивания. Так как при этом происходит нагрев стальных листов, из которых состоит сердечник, энергия электричества переходит в тепло. Тепловая энергия бесполезно рассеивается в окружающем пространстве. В этом и заключается механизм и физический смысл понятия потерь мощности, которая уходит на перемагничивание стального сердечника.
Но этим потери в металлических сердечниках не исчерпываются. Переменное магнитное поле наводит в металле так называемые «вихревые токи». И часть этого магнитного поля «уходит» в дополнительные потери. Чтобы уменьшить вихревые токи, магнитопроводы трансформаторов собирают из тонких стальных листов, покрытых тончайшей изолирующей пленкой.
Энергии на создание вихревых токов тратится тем меньше, чем тоньше металлический лист, из которого набран сердечник, и чем выше его удельное электрическое сопротивление. Добавляя в трансформаторное железо специальные присадки, реализуют и эту возможность уменьшения потерь мощности. При создании магнитопроводов учитывают, что мощность трансформаторов напрямую зависит от площади сечения сердечника.
Задачей конструкторов и технологов является увеличение эффективной площади магнитопровода за счет уменьшения толщины изоляционной пленки между листами металла. Вычисляя значение специального коэффициента заполнения (КЗ), можно судить о том, насколько производственникам удается улучшить эту характеристику. Известны тонкие изолирующие жаростойкие покрытия, применение которых позволяет достичь значения КЗ на уровне 0.95 – 0.96. Это очень высокий показатель, который можно незначительно улучшить дополнительной прессовкой магнитопроводов.